Document Type
Article
Publication Date
12-10-2019
Department
College of Forest Resources and Environmental Science
Abstract
Leaf maintenance respiration (Rleaf,m) is a major but poorly understood component of the terrestrial carbon cycle (C). Earth systems models (ESMs) use simple sub‐models relating Rleaf,m to leaf traits, applied at canopy scale. Rleaf,m models vary depending on which leaf N traits they incorporate (e.g., mass or area based) and the form of relationship (linear or nonlinear). To simulate vegetation responses to global change, some ESMs include ecological optimization to identify canopy structures that maximize net C accumulation. However, the implications for optimization of using alternate leaf‐scale empirical Rleaf,m models are undetermined. Here we combine alternate well‐known empirical models of Rleaf,m with a process model of canopy photosynthesis. We quantify how net canopy exports of C vary with leaf area index (LAI) and total canopy N (TCN). Using data from tropical and arctic canopies, we show that estimates of canopy Rleaf,m vary widely among the three models. Using an optimization framework, we show that the LAI and TCN values maximizing C export depends strongly on the Rleaf,m model used. No single model could match observed arctic and tropical LAI‐TCN patterns with predictions of optimal LAI‐TCN. We recommend caution in using leaf‐scale empirical models for components of ESMs at canopy‐scale. Rleaf,m models may produce reasonable results for a specified LAI, but, due to their varied representations of Rleaf,mfoliar N sensitivity, are associated with different and potentially unrealistic optimization dynamics at canopy scale. We recommend ESMs to be evaluated using response surfaces of canopy C export in LAI‐TCN space to understand and mitigate these risks.
Publication Title
Journal of Advances in Modeling Earth Systems
Recommended Citation
Thomas, R. Q.,
Williams, M.,
Cavaleri, M. A.,
Exbrayat, J.,
Smallman, T. L.,
&
Street, L. E.
(2019).
Alternate trait‐based leaf respiration schemes evaluated at ecosystem‐scale through carbon optimization modeling and canopy property data.
Journal of Advances in Modeling Earth Systems,
11(12), 4629-4644.
http://doi.org/10.1029/2019MS001679
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/1561
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Version
Publisher's PDF
Publisher's Statement
©2019. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Publisher’s version of record: https://doi.org/10.1029/2019MS001679