Neosinus and Sinus Flow After Self-Expanding and Balloon-Expandable Transcatheter Aortic Valve Replacement

Document Type

Article

Publication Date

11-17-2021

Abstract

OBJECTIVES: The aim of this study was to evaluate flow dynamics in the aortic sinus and the neosinus (NS) after transcatheter heart valve (THV) implantation in valve-in-valve (ViV). BACKGROUND: Leaflet thrombosis may occur on THVs and affect performance and durability. Differences in flow dynamics may affect the risk for leaflet thrombosis. METHODS: Hemodynamic assessment following THV implantation in a surgical aortic valve was performed in a left heart simulator under pulsatile physiological conditions. Assessment was performed using a 23-mm polymeric surgical aortic valve (not diseased) and multiple THV platforms, including self-expanding devices (26-mm Evolut, 23-mm Allegra, small ACURATE neo) and a balloon-expandable device (23-mm SAPIEN 3). Particle image velocimetry was performed to assess flow in the sinus and NS. Sinus and NS washout, shear stress, and velocity were calculated. RESULTS: Sinus and NS washout was fastest and approximately 1 cardiac cycle for each with the Evolut, ACURATE neo, and Allegra compared with the SAPIEN 3, with washout in 2 and 3 cardiac cycles, respectively. The Allegra showed the largest shear stress distribution in the sinus, followed by the SAPIEN 3. In the NS, all 4 valves showed equal likelihoods of occurrence of shear stress <1 Pa, but the Allegra showed the highest likelihoods of occurrence for shear stress >1 Pa. The velocities in the sinus and NS were 0.05, 0.078, 0.080, and 0.075 m/s for Evolut, SAPIEN 3, ACURATE neo, and Allegra ViV, respectively. CONCLUSIONS: Sinus and NS flow dynamics differ substantially among THVs after ViV. Self-expanding supra-annular valves seem to have faster washouts compared with an equivalent-size balloon-expandable THV.

Publication Title

JACC. Cardiovascular interventions

Share

COinS