Document Type

Article

Publication Date

1-1-2021

Department

Department of Materials Science and Engineering

Abstract

Protonic ceramic electrolysis cells (PCECs) are attractive electrochemical devices for converting electrical energy to chemicals due to their high conversion efficiency, favorable thermodynamics, fast kinetics, and inexpensive materials. Compared with conventional oxygen ion-conducting solid oxide electrolysis cells, PCECs operate at a lower operating temperature and a favorable operation mode, thus expecting high durability. However, the degradation of PCECs is still significant, hampering their development. In this review, the typical degradations of PCECs are summarized, with emphasis on the chemical stability of the electrolytes and the air electrode materials. Moreover, the degradation mechanism and influencing factors are assessed deeply. Finally, the emerging strategies for inhibiting long-term degradations, including chemical composition modifications and microstructure tuning, are explored.

Publication Title

Energy Science and Engineering

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.