Uncertain Inference Using Ordinal Classification in Deep Networks for Acoustic Localization

Document Type

Conference Proceeding

Publication Date

9-20-2021

Department

Department of Electrical and Computer Engineering; Department of Computer Science

Abstract

Highly-reverberate underwater environments pose challenges for conventional localization techniques due to the highly non-linear nature of reflective surfaces, multi-path, and scattering fields. In this paper, we compare different machine learning methods for passive localization and tracking of single, non-stationary, underwater acoustic sources using multiple underwater acoustic vector sensors. We incorporate ordinal classification for localization in a novel approach to acoustic localization and compare the results with other standard methods. Realworld experiments demonstrate that both categorical and ordinal classification using deep LSTM networks significantly reduce localization error.

Publication Title

Proceedings of the International Joint Conference on Neural Networks

ISBN

9780738133669

Share

COinS