Inductive Formulas Related to Prime Partitions
Document Type
Article
Publication Date
11-2-2019
Department
Department of Mathematical Sciences
Abstract
Prime partitions are partitions of integers into prime parts. In this paper, we first consider prime partitions with distinct parts. By using generating functions, we obtain some inductive formulas to calculate the number of prime partitions with distinct parts. Our formulas give two generalizations of the Euler’s formula for the integer partition case. Then, we consider general prime partitions with not necessarily distinct parts. By keeping track of the recurrence of primes in a partition and finding bijections between different prime partitions, we get some inductive formulas to calculate the number of general prime partitions. Finally, by numerical experimentation we find an approximation of some analytical formulas for the number of general prime partitions.
Publication Title
Bulletin of the Malaysian Mathematical Sciences Society
Recommended Citation
Sun, J.,
&
Sutela, K.
(2019).
Inductive Formulas Related to Prime Partitions.
Bulletin of the Malaysian Mathematical Sciences Society,
43, 563-579.
http://doi.org/10.1007/s40840-018-0702-1
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/1517