Document Type

Article

Publication Date

5-12-2021

Department

Michigan Tech Research Institute

Abstract

Higher spatial and temporal resolutions of remote sensing data are likely to be useful for ecological monitoring efforts. There are many different treatment approaches for the introduced European genotype of Phragmites australis, and adaptive management principles are being integrated in at least some long-term monitoring efforts. In this paper, we investigated how natural color and a smaller set of near-infrared (NIR) images collected with low-cost uncrewed aerial vehicles (UAVs) could help quantify the aboveground effects of management efforts at 20 sites enrolled in the Phragmites Adaptive Management Framework (PAMF) spanning the coastal Laurentian Great Lakes region. We used object-based image analysis and field ground truth data to classify the Phragmites and other cover types present at each of the sites and calculate the percent cover of Phragmites, including whether it was alive or dead, in the UAV images. The mean overall accuracy for our analysis with natural color data was 91.7% using four standardized classes (Live Phragmites, Dead Phragmites, Other Vegetation, Other Non-vegetation). The Live Phragmites class had a mean user’s accuracy of 90.3% and a mean producer’s accuracy of 90.1%, and the Dead Phragmites class had a mean user’s accuracy of 76.5% and a mean producer’s accuracy of 85.2% (not all classes existed at all sites). These results show that UAV-based imaging and object-based classification can be a useful tool to measure the extent of dead and live Phragmites at a series of sites undergoing management. Overall, these results indicate that UAV sensing appears to be a useful tool for identifying the extent of Phragmites at management sites.

Publisher's Statement

This work was authored as part of the Contributor’s official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. This is an Open Access article that has been identified as being free of known restrictions under copyright law, including all related and neighboring rights (https://creativecommons.org/publicdomain/mark/ 1.0/). You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. Publisher’s version of record: https://doi.org/10.3390/rs13101895

Publication Title

Remote Sensing

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Public Domain Dedication 1.0 License.

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.