microRNA-483 Protects Pancreatic β-Cells by Targeting ALDH1A3
Document Type
Article
Publication Date
5-2021
Department
Department of Biological Sciences
Abstract
Pancreatic β-cell dysfunction is central to the development and progression of type 2 diabetes. Dysregulation of microRNAs (miRNAs) has been associated with pancreatic islet dysfunction in type 2 diabetes. Previous study has shown that miR-483 is expressed relatively higher in β-cells than in α-cells. To explore the physiological function of miR-483, we generated a β-cell-specific knockout mouse model of miR-483. Loss of miR-483 enhances high-fat diet-induced hyperglycemia and glucose intolerance by the attenuation of diet-induced insulin release. Intriguingly, mice with miR-483 deletion exhibited loss of β-cell features, as indicated by elevated expression of aldehyde dehydrogenase family 1, subfamily A3 (Aldh1a3), a marker of β-cell dedifferentiation. Moreover, Aldh1a3 was validated as a direct target of miR-483 and overexpression of miR-483 repressed Aldh1a3 expression. Genetic ablation of miR-483 also induced alterations in blood lipid profile. Collectively, these data suggest that miR-483 is critical in protecting β-cell function by repressing the β-cell disallowed gene Aldh1a3. The dysregulated miR-483 may impair insulin secretion and initiate β-cell dedifferentiation during the development of type 2 diabetes.
Publication Title
Endocrinology
Recommended Citation
Wang, Z.,
Mohan, R.,
Chen, X.,
Matson, K.,
Waugh, J.,
Mao, Y.,
Zhang, S.,
Li, W.,
Tang, X.,
Satin, L.,
&
Tang, X.
(2021).
microRNA-483 Protects Pancreatic β-Cells by Targeting ALDH1A3.
Endocrinology,
162(5).
http://doi.org/10.1210/endocr/bqab031
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/14780