Document Type

Article

Publication Date

2-4-2021

Department

Great Lakes Research Center

Abstract

Throughout their life history, many animals transition among heterogeneous environments to facilitate behaviours such as reproduction, foraging and predator avoidance. The dynamic environmental and biological conditions experienced by mobile species are integrated in the chemical composition of their tissues, providing retrospective insight into movement. Here, we present a unique application of nitrogen stable isotope clocks (‘isotopic clocks’), which integrate tissue turnover rates, consumer stable isotope ratios and habitat-specific isotope baselines to predict time-since-immigration and the timing of habitat shifts in a migratory species. Nitrogen stable isotope values of blood plasma collected from juvenile sand tiger sharks Carcharias taurus, a species known to undertake seasonal movements between ocean and estuarine environments, were used to derive estimates of time-since-immigration and the timing of seasonal habitat shifts undertaken by this species. Nitrogen isotopic clocks estimated for 65 juvenile sand tiger sharks sampled across 6 years indicated that individual sharks predominantly arrived to estuarine habitats between June and July, with some individuals arriving as early as mid-May. These estimates were validated by comparing isotope-derived estuarine arrival times with those from acoustically tracked individuals. The median estuarine arrival day estimates from our isotopic approach aligned with estimates from acoustic telemetry for each sampling population. Sensitivity analyses indicated that isotopically inferred time-since-immigration and estuarine arrival estimates were robust to variation in isotopic turnover rate and diet tissue discrimination factors under multiple modelling scenarios. This suggests that parameterization of the nitrogen isotopic clock provides reliable estimates of time-since-immigration and day of arrival into new habitats if isotopic variation exists between origin and new locations. Our study presents a unique application of telemetry-validated isotope clocks to derive retrospective estimates of time-since-immigration and timing of habitat shifts for animals that seasonally traverse heterogeneous environments. This approach can be readily applied across many temporal and spatial scales, and to other species and ecosystems, to facilitate rapid assessment of changes in animal habitat use and broader ecosystem structure.

Publisher's Statement

© 2021 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society. Publisher’s version of record: https://doi.org/10.1111/2041-210X.13567

Publication Title

Methods in Ecology and Evolution

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Publisher's PDF

Included in

Life Sciences Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.