Accelerated Density-Based Clustering using Bayesian Sequential Partitioning

Document Type

Conference Proceeding

Publication Date

9-28-2020

Department

Department of Electrical and Computer Engineering

Abstract

This paper presents our work on improving an existing density-based clustering algorithm. By using Bayesian sequential partitioning (BSP) in the density estimation part of the algorithm, we were able to significantly reduce the computational complexity of the clustering algorithm. Simulation results showed 15 to 40% reduction in computation time, depending on the dimensions of the data, while retaining the clustering accuracy of the original algorithm.

Publication Title

2020 IEEE International Symposium on Circuits and Systems (ISCAS)

Share

COinS