Document Type
Article
Publication Date
4-23-2014
Department
Department of Geological and Mining Engineering and Sciences; Department of Civil, Environmental, and Geospatial Engineering
Abstract
There has been significant stratospheric ozone depletion since the late 1970s due to ozone-depleting substances (ODSs). With the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. In this study, we examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). With a full recovery of the stratospheric ozone, the projected increases in ozone column range from 1% over the low latitudes to more than 10% over the polar regions. The sensitivity factor of troposphere ozone photolysis rate, defined as the percentage changes in surface ozone photolysis rate for 1% increase in stratospheric ozone column, shows significant seasonal variation but is always negative with absolute value larger than one. The expected stratospheric ozone recovery is found to affect the tropospheric ozone destruction rates much more than the ozone production rates. Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. The global average tropospheric OH decreases by 1.7%, and the global average lifetime of tropospheric ozone increases by 1.5%. The perturbations to tropospheric ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 0.8 ppbv in the remote areas. Increases in ozone lifetime by up to 13% are found in the troposphere. The increased lifetimes of tropospheric ozone in response to stratospheric ozone recovery enhance the intercontinental transport of ozone and global pollution, in particular for the summertime. The global background ozone attributable to Asian emissions is calculated to increase by up to 15% or 0.3 ppbv in the Northern Hemisphere in response to the projected stratospheric ozone recovery.
Publication Title
Atmospheric Chemistry and Physics
Recommended Citation
Zhang, H.,
Wu, S.,
Huang, Y.,
&
Wang, Y.
(2014).
Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere.
Atmospheric Chemistry and Physics,
14, 4079-4086.
http://doi.org/10.5194/acp-14-4079-2014
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/1420
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Version
Publisher's PDF
Included in
Atmospheric Sciences Commons, Civil and Environmental Engineering Commons, Geological Engineering Commons