Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory
Document Type
Article
Publication Date
10-2019
Department
Department of Physics
Abstract
Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming τ neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in ~ 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an Eν−2 spectrum in the energy range 1.0 × 1017 eV –2.5 × 1019 eV is E2 dNν/dEν < 4.4 × 10−9 GeV cm−2 s−1 sr−1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays.
Publication Title
Journal of Cosmology and Astroparticle Physics
Recommended Citation
Nitz, D. F.,
&
et.al.
(2019).
Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory.
Journal of Cosmology and Astroparticle Physics.
http://doi.org/10.1088/1475-7516/2019/10/022
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/1379