Effect of chain architecture on the compression behavior of nanoscale polyethylene particles
Document Type
Article
Publication Date
1-1-2013
Abstract
Polymeric particles with controlled internal molecular architectures play an important role as constituents in many composite materials for a number of emerging applications. In this study, classical molecular dynamics techniques are employed to predict the effect of chain architecture on the compression behavior of nanoscale polyethylene particles subjected to simulated flat-punch testing. Cross-linked, branched, and linear polyethylene chain architectures are each studied in the simulations. Results indicate that chain architecture has a significant influence on the mechanical properties of polyethylene nanoparticles, with the network configuration exhibiting higher compressive strengths than the branched and linear architectures. These findings are verified with simulations of bulk polyethylene. The compressive stress versus strain profiles of particles show four distinct regimes, differing with that of experimental micron-sized particles. The results of this study indicate that the mechanical response of polyethylene nanoparticles can be custom-tailored for specific applications by changing the molecular architecture. © 2013 Wu et al.
Publication Title
Nanoscale Research Letters
Recommended Citation
Wu, J.,
He, J.,
Odegard, G.,
&
Zhang, Z.
(2013).
Effect of chain architecture on the compression behavior of nanoscale polyethylene particles.
Nanoscale Research Letters,
8(1).
http://doi.org/10.1186/1556-276X-8-322
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/13011