"Superconvergence of discontinuous Galerkin methods for two-dimensional" by Waixiang Cao, Chi Wang Shu et al.
 

Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations

Document Type

Article

Publication Date

1-1-2015

Abstract

© 2015 Society for Industrial and Applied Mathematics. This paper is concerned with superconvergence properties of discontinuous Galerkin (DG) methods for two-dimensional linear hyperbolic conservation laws over rectangular meshes when upwind fluxes are used. We prove, under some suitable initial and boundary discretizations, the (2k + 1)th order superconvergence rate of the DG approximation at the downwind points and for the cell averages, when piecewise tensor-product polynomials of degree k are used. Moreover, we prove that the gradient of the DG solution is superconvergent with a rate of (k + 1)th order at all interior left Radau points; and the function value approximation is superconvergent at all right Radau points with a rate of (k + 2)th order. Numerical experiments indicate that the aforementioned superconvergence rates are sharp.

Publication Title

SIAM Journal on Numerical Analysis

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 48
  • Usage
    • Abstract Views: 1
  • Captures
    • Readers: 8
see details

Share

COinS