The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)

Authors

G. A. Tuskan, ORNL Environmental Sciences Division
S. DiFazio, ORNL Environmental Sciences Division
S. Jansson, Umeå Universitet
J. Bohlmann, Michael Smith Laboratories
I. Grigoriev, United States Department of Energy
U. Hellsten, United States Department of Energy
M. Putnam, United States Department of Energy
S. Ralph, Michael Smith Laboratories
S. Rombauts, Flanders Interuniversity Institute for Biotechnology
A. Salamov, United States Department of Energy
J. Schein, Canada‘s Michael Smith Genome Sciences Centre
L. Sterck, Flanders Interuniversity Institute for Biotechnology
A. Aerts, United States Department of Energy
R. R. Bhalerao, Umeå Universitet
R. P. Bhalerao, Sveriges lantbruksuniversitet
D. Blaudez, Centre de recherche Grand Est-Nancy
W. Boerjan, Flanders Interuniversity Institute for Biotechnology
A. Brun, Centre de recherche Grand Est-Nancy
A. Brunner, Virginia Polytechnic Institute and State University
V. Busov, Michigan Technological University
M. Campbell, University of Toronto
J. Carlson, Huck Institutes of the Life Sciences
M. Chalot, Centre de recherche Grand Est-Nancy
J. Chapman, United States Department of Energy
G. L. Chen, Sveriges lantbruksuniversitet
D. Cooper, Michael Smith Laboratories
P. M. Coutinho, Architecture et Fonction des Macromolécules Biologiques, Marseille
J. Couturier, Centre de recherche Grand Est-Nancy
S. Covert, The University of Georgia
Q. Cronk, The University of British Columbia
R. Cunningham, ORNL Environmental Sciences Division
J. Davis, University of Florida

Document Type

Article

Publication Date

9-15-2006

Abstract

We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.

Publication Title

Science

Share

COinS