Fading probability density function of free-space optical communication channels with pointing error
Document Type
Conference Proceeding
Publication Date
6-29-2011
Abstract
The turbulent atmosphere causes wavefront distortion, beam wander, and beam broadening of a laser beam. These effects result in average power loss and instantaneous power fading at the receiver aperture and thus degrade performance of a free-space optical (FSO) communication system. In addition to the atmospheric turbulence, a FSO communication system may also suffer from laser beam pointing error. The pointing error causes excessive power loss and power fading. This paper proposes and studies an analytical method for calculating the FSO channel fading probability density function (pdf) induced by both atmospheric turbulence and pointing error. This method is based on the fast-tracked laser beam fading profile and the joint effects of beam wander and pointing error. In order to evaluate the proposed analytical method, large-scale numerical wave-optics simulations are conducted. Three types of pointing errors are studied, namely, the Gaussian random pointing error, the residual tracking error, and the sinusoidal sway pointing error. The FSO system employs a collimated Gaussian laser beam propagating along a horizontal path. The propagation distances range from 0.25 miles to 2.5 miles. The refractive index structure parameter is chosen to be Cn2 = 5×10 -15m-2/3 and Cn2 = 5×10 -13m-2/3. The studied cases cover from weak to strong fluctuations. The fading pdf curves of channels with pointing error calculated using the analytical method match accurately the corresponding pdf curves obtained directly from large-scale wave-optics simulations. They also give accurate average bit-error-rate (BER) curves and outage probabilities. Both the lognormal and the best-fit gamma-gamma fading pdf curves deviate from those of corresponding simulation curves, and they produce overoptimistic average BER curves and outage probabilities. © 2011 SPIE.
Publication Title
Proceedings of SPIE - The International Society for Optical Engineering
Recommended Citation
Zhao, Z.,
&
Liao, R.
(2011).
Fading probability density function of free-space optical communication channels with pointing error.
Proceedings of SPIE - The International Society for Optical Engineering,
8038.
http://doi.org/10.1117/12.884401
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/12162