IGraph: A graph-based technique for visual analytics of image and text collections

Document Type

Conference Proceeding

Publication Date

1-1-2015

Abstract

© 2015 SPIE-IS & T. In our daily lives, images and texts are among the most commonly found data which we need to handle. We present iGraph, a graph-based approach for visual analytics of large image and text collections. Given such a collection, we compute the similarity between images, the distance between texts, and the connection between image and text to construct iGraph, a compound graph representation which encodes the underlying relationships among these images and texts. To enable effective visual navigation and comprehension of iGraph with tens of thousands of nodes and hundreds of millions of edges, we present a progressive solution that offers collection overview, node comparison, and visual recommendation. Our solution not only allows users to explore the entire collection with representative images and keywords, but also supports detailed comparison for understanding and intuitive guidance for navigation. For performance speedup, multiple GPUs and CPUs are utilized for processing and visualization in parallel. We experiment with two image and text collections and leverage a cluster driving a display wall of nearly 50 million pixels. We show the effectiveness of our approach by demonstrating experimental results and conducting a user study.

Publication Title

Proceedings of SPIE - The International Society for Optical Engineering

Share

COinS