Technique for simulating anisoplanatic image formation over long horizontal paths

Document Type

Article

Publication Date

10-1-2012

Abstract

The presence of turbulence over horizontal imaging paths severely reduces the resolution available to imaging systems and introduces anisoplanatic distortions in the image frame. A variety of image processing techniques are being developed which can mitigate these effects, and sequences of high-fidelity images created via simulation are useful in their development. In this paper, we describe a simplification of the splitstep wave propagation method that employs a series of uniformly spaced phase screens to accurately simulate turbulence effects on imaging over horizontal paths. Employing this method, a series of 1000 image frames were generated for each of three turbulence conditions. The mean squared error in intensity per pixel is also evaluated for each frame in comparison to a diffraction-limited reference. Examination of the per-frame intensity error statistics indicate these errors are log-normally distributed about a mean value that increases approximately linearly with turbulence strength. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).

Publication Title

Optical Engineering

Share

COinS