Effects of blending gasoline with ethanol and butanol on engine efficiency and emissions using a direct-injection, spark-ignition engine

Document Type

Conference Proceeding

Publication Date

12-1-2009

Abstract

The new U.S. Renewable Fuel Standard requires an increase of ethanol and advanced biofuels to 36 billion gallons by 2022. Due to its high octane number, renewable character and minimal toxicity, ethanol was believed to be one of the most favorable alternative fuels to displace gasoline in sparkignited engines. However, ethanol fuel results in a substantial reduction in vehicle range when compared to gasoline. In addition, ethanol is fully miscible in water which requires blending at distribution sites instead of the refinery. Butanol, on the other hand, has an energy density comparable to gasoline and lower affinity for water than ethanol. Butanol has recently received increased attention due to its favorable fuel properties as well as new developments in production processes. The advantageous properties of butanol warrant a more in-depth study on the potential for butanol to become a significant component of the advanced biofuels mandate. This study evaluates the combustion behavior, performance, as well as the regulated engine-out emissions of ethanol and butanol blends with gasoline. Two of the butanol isomers; 1-butanol as well as iso-butanol, were tested as part of this study. The evaluation includes gasoline as a baseline, as well as various ethanol/gasoline and butanol/gasoline blends up to a volume blend ratio of 85% of the oxygenated fuel. The test engine is a spark ignition, direct-injection, (SIDI), four-cylinder test engine equipped with pressure transducers in each cylinder. These tests were designed to evaluate a scenario in terms of using these alcohol blends in an engine calibrated for pump gasoline operation. Therefore no modifications to the engine calibration were performed. Following this analysis of combustion behavior and emissions with the base engine calibration, future studies will include detailed heat release analysis of engine operation without exhaust gas recirculation. Also, knock behavior of the different fuel blends will be studied along with unregulated engine out emissions. Copyright © 2009 by ASME.

Publication Title

Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division

Share

COinS