A theoretical discussion of a menisci micropump driven by an electric field

Document Type

Article

Publication Date

4-1-2007

Abstract

The potential for miniaturization of analytical devices made possible by advances in micro-fabrication technology is driving demand for reliable micropumps. A wide variety of micropumps exist with many types of actuating mechanisms. One such mechanism is electrohydrodynamic (EHD) forces which rely upon Coulomb forces on free charges and/or polarization forces on induced dipoles within the liquid to induce fluid motion. EHD has been used to pump liquid phases and to displace gas-liquid interfaces for enhanced boiling heat transfer as well as to displace gas/vapor bubbles. A novel concept for using EHD polarization forces to deflect a stationary meniscus in order to compress and pump a gaseous phase in described. The pumping mechanism consists in alternative compression of two gas volumes by continuous deflection of the two pinned menisci of an entrapped liquid slug in an electric field. Using the Maxwell stress relations, the electric field strength necessary to operate the pump is determined. The operational limits are determined by analyzing the stability limits of the two menisci from inertial and viscous standpoints, corroborated with the natural frequencies of the gas-liquid interfaces. Copyright © 2007 by ASME.

Publication Title

Journal of Fluids Engineering, Transactions of the ASME

Share

COinS