Numerical study of lean-direct injection combustor with discrete-jet swirlers using Reynolds stress model

Document Type

Article

Publication Date

10-1-2003

Abstract

The flowfield in a lean-direct injection (LDI) combustor with discrete-jet swirlers is described and analyzed using a computational fluid dynamics (CFD) code with a Reynolds stress turbulence model (RSTM). The results from the RSTM are compared to timeaveraged laser-Doppler velocimetry (LDV) data, as well as results from the National Combustion Code (NCC) that has a cubic nonlinear κ-ε turbulence model, and from the KIVA code using the standard κ-ε model. The comparisons of results indicate that the RSTM accurately describes the flow details and resolves recirculation zones and high velocity gradients while the κ-ε models are unable to capture most flow structures. This confirms that, within the Reynolds averaging approach, the higher-order RSTM is preferred for simulating complex flowfields where separations, strong anisotropy, and high swirl are present.

Publication Title

Journal of Engineering for Gas Turbines and Power

Share

COinS