Ontogenetic colour change and the evolution of aposematism: A case study in panic moth caterpillars

Document Type

Article

Publication Date

5-1-2007

Abstract

Aposematism is a widely used antipredator strategy in which an organism possesses both warning coloration and unprofitable characters. Theoretical evidence suggests that aposematic colour should develop when high opportunity costs imposed by crypsis force an organism to engage in conspicuous behaviours. Hence, it is expected that ontogenetic colour change (OCC) in larval insects should include aposematism when foraging needs compel behavioural modifications that preclude a continued state of crypsis. To test this idea, I first investigated whether OCC in caterpillars of the panic moth Saucrobotys futilalis was indicative of a switch from cryptic to aposematic coloration. I then examined the context of panic moth OCC as it related to foraging patterns and behavioural conspicuousness. Early Saucrobotys instars are a cryptic green, but later instars become progressively more orange and develop black spots. Early instar larvae forage cryptically on the inner parenchyma of silked-together host plant leaves to avoid predation, but are rapidly forced to engage in conspicuous foraging behaviours as they outgrow the resources afforded by their shelters. Both coloration and behaviour reach maximal conspicuousness in final instar larvae. As predicted, OCC encompassed a change from crypsis to aposematism in Saucrobotys. Aposematic function was demonstrated by changes in both antipredator behaviour patterns and effectiveness of predator deterrence in early and late instars. Moreover, increased opportunity costs of crypsis and behavioural conspicuousness coincided with the onset of aposematic coloration. This pattern of OCC suggests that aposematic coloration in Saucrobotys develops as a response to constraints imposed by crypsis. Moreover, my study illustrates the importance of the study of ontogenetic patterns in determining how behaviour, morphology, and predator responses interact to influence the initial evolution of phenomena such as aposematism. © 2007 The Author. Journal compilation © 2007 British Ecological Society.

Publication Title

Journal of Animal Ecology

Share

COinS