Towards a global assessment of pyrogenic carbon from vegetation fires
Document Type
Article
Publication Date
1-1-2016
Abstract
© 2016 John Wiley & Sons Ltd. The production of pyrogenic carbon (PyC; a continuum of organic carbon (C) ranging from partially charred biomass and charcoal to soot) is a widely acknowledged C sink, with the latest estimates indicating that ~50% of the PyC produced by vegetation fires potentially sequesters C over centuries. Nevertheless, the quantitative importance of PyC in the global C balance remains contentious, and therefore, PyC is rarely considered in global C cycle and climate studies. Here we examine the robustness of existing evidence and identify the main research gaps in the production, fluxes and fate of PyC from vegetation fires. Much of the previous work on PyC production has focused on selected components of total PyC generated in vegetation fires, likely leading to underestimates. We suggest that global PyC production could be in the range of 116-385 Tg C yr-1, that is ~0.2-0.6% of the annual terrestrial net primary production. According to our estimations, atmospheric emissions of soot/black C might be a smaller fraction of total PyC ( < 2%) than previously reported. Research on the fate of PyC in the environment has mainly focused on its degradation pathways, and its accumulation and resilience either in situ (surface soils) or in ultimate sinks (marine sediments). Off-site transport, transformation and PyC storage in intermediate pools are often overlooked, which could explain the fate of a substantial fraction of the PyC mobilized annually. We propose new research directions addressing gaps in the global PyC cycle to fully understand the importance of the products of burning in global C cycle dynamics.
Publication Title
Global Change Biology
Recommended Citation
Santín, C.,
Doerr, S.,
Kane, E.,
Masiello, C.,
Ohlson, M.,
de la Rosa, J.,
Preston, C.,
&
Dittmar, T.
(2016).
Towards a global assessment of pyrogenic carbon from vegetation fires.
Global Change Biology,
22(1), 76-91.
http://doi.org/10.1111/gcb.12985
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/11259