Fixed-priority allocation and scheduling for energy-efficient fault tolerance in hard real-time multiprocessor systems

Document Type

Article

Publication Date

9-9-2008

Abstract

Energy-efficient task allocation and scheduling schemes with deterministic fault-tolerance capabilities are proposed for symmetric multiprocessor systems executing tasks with hard real-time constraints. The proposed heuristic is proven to achieve energy savings by optimally balancing application workload among processors in a system. Based on the observation that fault-free operation is expected to remain dominant in the near future and the probability of the worst case faults is low, an optimistic fault-tolerant heuristic is then proposed to achieve maximum energy savings in the absence of faults while degrading gradually to meet application timing requirements in the worst case of faults. Simulation results show that compared to state-of-art allocation and scheduling schemes proposed heuristic achieves average energy savings of up to 70%. It is also shown that optimistic approach is more resilient to variations in application utilizations and fault occurrences beyond system specifications. © 2008 IEEE.

Publication Title

IEEE Transactions on Parallel and Distributed Systems

Share

COinS