Vulnerability assessment and defense technology for smart home cybersecurity considering pricing cyberattacks
Document Type
Conference Proceeding
Publication Date
1-5-2015
Abstract
© 2014 IEEE. Smart home, which controls the end use of the power grid, has become a critical component in the smart grid infrastructure. In a smart home system, the advanced metering infrastructure (AMI) is used to connect smart meters with the power system and the communication system of a smart grid. The electricity pricing information is transmitted from the utility to the local community, and then broadcast through wired or wireless networks to each smart meter within AMI. In this work, the vulnerability of the above process is assessed. Two closely related pricing cyberattacks which manipulate the guideline electricity prices received at smart meters are considered and they aim at reducing the expense of the cyberattacker and increasing the peak energy usage in the local community. A countermeasure technique which uses support vector regression and impact difference for detecting anomaly pricing is then proposed. These pricing cyberattacks explore the interdependance between the transmitted electricity pricing in the communication system and the energy load in the power system, which are the first such cyber-Attacks in the smart home context. Our simulation results demonstrate that the pricing cyberattack can reduce the attacker's bill by 34.3% at the cost of the increase of others' bill by 7.9% on average. In addition, the pricing cyberattack can unbalance the energy load of the local power system as it increases the peak to average ratio by 35.7%. Furthermore, our simulation results show that the proposed countermeasure technique can effectively detect the electricity pricing manipulation.
Publication Title
IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
Recommended Citation
Liu, Y.,
Hu, S.,
&
Ho, T.
(2015).
Vulnerability assessment and defense technology for smart home cybersecurity considering pricing cyberattacks.
IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD,
2015-January(January), 183-190.
http://doi.org/10.1109/ICCAD.2014.7001350
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/10560