Extracellular matrix assembly in diatoms (Bacillariophyceae): II. 2,6-dichlorobenzonitrile inhibition of motility and stalk production in the marine diatom Achnanthes longipes

Document Type

Article

Publication Date

1-1-1997

Abstract

The cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB) and the DCB analogs 2-chloro-6-fluorobenzonitrile, 3-amino-2,6-dichlorobenzonitrile, and 5-dimethylamino-naphthalene-1-sulfonyl-(3-cyano-2, 4-dichloro)aniline (DCBF) inhibited extracellular adhesive production in the marine diatom Achnanthes longipes, resulting in a loss of motility and a lack of permanent adhesion. The effect was fully reversible upon removal of the inhibitor, and cell growth was not affected at concentrations of inhibitors adequate to effectively interrupt the adhesion sequence. Video microscopy revealed that the adhesion sequence was mediated by the export and assembly of polymers, and consisted of initial attachment followed by cell motility and eventual production of permanent adhesive structures in the form of stalks that elevated the diatom above the substratum. A. longipes adhesive polymers are primarily composed of noncellulosic polysaccharides (B.A. Wustman, M.R. Gretz, and K.D. Hoagland [1997] Plant Physiol 113: 1059-1069). These results, together with the discovery of DCB inhibition of extracellular matrix assembly in noncellulosic red algal unicells (S.M. Arad, O. Dubinsky, and B. Simon [1994] Phycologia 33: 158-162), indicate that DCB inhibits synthesis of noncellulosic extracellular polysaccharides. A fluorescent probe, DCBF, was synthesized and shown to inhibit adhesive polymer production in the same manner as DCB. DCBF specifically labeled an 18-kD polypeptide isolated from a membrane fraction. Inhibition of adhesion by DCB and its analogs provides evidence of a direct relationship between polysaccharide synthesis and motility and permanent adhesion.

Publication Title

Plant Physiology

Share

COinS