Differential expansion and expression of α- and β-tubulin gene families in Populus

Document Type

Article

Publication Date

11-1-2007

Abstract

Microtubule organization is intimately associated with cellulose microfibril deposition, central to plant secondary cell wall development. We have determined that a relatively large suite of eight α-TUBULIN (TUA) and 20 β-TUBULIN (TUB) genes is expressed in the woody perennial Populus. A number of features, including gene number, α:β gene representation, amino acid changes at the C terminus, and transcript abundance in wood-forming tissue, distinguish the Populus tubulin suite from that of Arabidopsis thaliana. Five of the eight Populus TUAs are unusual in that they contain a C-terminal methionine, glutamic acid, or glutamine, instead of the more typical, and potentially regulatory, C-terminal tyrosine. Both C-terminal Y-type (TUA1) and M-type (TUA5) TUAs were highly expressed in wood-forming tissues and pollen, while the Y-type TUA6 and TUA8 were abundant only in pollen. Transcripts of the disproportionately expanded TUB family were present at comparatively low levels, with phylogenetically distinct classes predominating in xylem and pollen. When tension wood induction was used as a model system to examine changes in tubulin gene expression under conditions of augmented cellulose deposition, xylem-abundant TUA and TUB genes were up-regulated. Immunolocalization of TUA and TUB in xylem and phloem fibers of stems further supported the notion of heavy microtubule involvement during cellulose microfibril deposition in secondary walls. The high degree of sequence diversity, differential expansion, and differential regulation of Populus TUA and TUB families may confer flexibility in cell wall formation that is of adaptive significance to the woody perennial growth habit. © 2007 American Society of Plant Biologists.

Publication Title

Plant Physiology

Share

COinS