Maximal arcs and extended cyclic codes
Document Type
Article
Publication Date
4-2019
Abstract
It is proved that for every d≥2 such that d−1 divides q−1 , where q is a power of 2, there exists a Denniston maximal arc A of degree d in PG(2,q) , being invariant under a cyclic linear group that fixes one point of A and acts regularly on the set of the remaining points of A. Two alternative proofs are given, one geometric proof based on Abatangelo–Larato’s characterization of Denniston arcs, and a second coding-theoretical proof based on cyclotomy and the link between maximal arcs and two-weight codes.
Publication Title
Designs, Codes and Cryptography
Recommended Citation
DeWinter, S.,
Ding, C.,
&
Tonchev, V.
(2019).
Maximal arcs and extended cyclic codes.
Designs, Codes and Cryptography,
87(4), 807-816.
http://doi.org/10.1007/s10623-018-0514-1
Retrieved from: https://digitalcommons.mtu.edu/math-fp/70
Publisher's Statement
© Springer Science+Business Media, LLC, part of Springer Nature 2018. Publisher’s version of record: https://doi.org/10.1007/s10623-018-0514-1