Simplicial complexes and Macaulay’s inverse systems
Document Type
Article
Publication Date
5-2010
Abstract
Let Δ be a simplicial complex on V = {x 1, . . . , x n }, with Stanley–Reisner ideal IΔ⊆R=k[x1,…,xn] . The goal of this paper is to investigate the class of artinian algebras A=A(Δ,a1,…,an)=R/(IΔ,xa11,…,xann) , where each a i ≥ 2. By utilizing the technique of Macaulay’s inverse systems, we can explicitly describe the socle of A in terms of Δ. As a consequence, we determine the simplicial complexes, that we will call levelable, for which there exists a tuple (a 1, . . . , a n ) such that A(Δ, a 1, . . . , a n ) is a level algebra.
Publication Title
Mathematische Zeitschrift
Recommended Citation
Van Tuyl, A.,
&
Zanello, F.
(2010).
Simplicial complexes and Macaulay’s inverse systems.
Mathematische Zeitschrift,
265(1), 151-160.
http://doi.org/10.1007/s00209-009-0507-x
Retrieved from: https://digitalcommons.mtu.edu/math-fp/46
Publisher's Statement
© Springer-Verlag 2009. Publisher’s version of record: https://doi.org/10.1007/s00209-009-0507-x