Perfect Codes and Balanced Generalized Weighing Matrices☆
Document Type
Article
Publication Date
7-1999
Abstract
It is proved that any set of representatives of the distinct one-dimensional subspaces in the dual code of the unique linear perfect single-error-correcting code of length (qd−1)/(q−1) overGF(q) is a balanced generalized weighing matrix over the multiplicative group ofGF(q). Moreover, this matrix is characterized as the unique (up to equivalence) wieghing matrix for the given parameters with minimumq-rank. The classical, more involved construction for this type of BGW-matrices is discussed for comparison, and a few monomially inequivalent examples are included.
Publication Title
Finite Fields and Their Applications
Recommended Citation
Jungnickel, D.,
&
Tonchev, V.
(1999).
Perfect Codes and Balanced Generalized Weighing Matrices☆.
Finite Fields and Their Applications,
5(3), 294-300.
http://doi.org/10.1006/ffta.1999.0252
Retrieved from: https://digitalcommons.mtu.edu/math-fp/130
Publisher's Statement
Copyright © 1999 Academic Press. All rights reserved. Publisher’s version of record:
https://doi.org/10.1006/ffta.1999.0252