Mutually disjoint designs and new 5‐designs derived from groups and codes

Document Type

Article

Publication Date

5-2010

Abstract

The article gives constructions of disjoint 5‐designs obtained from permutation groups and extremal self‐dual codes. Several new simple 5‐designs are found with parameters that were left open in the table of 5‐designs given in (G. B. Khosrovshahi and R. Laue, t‐Designs with t⩾3, in “Handbook of Combinatorial Designs”, 2nd edn, C. J. Colbourn and J. H. Dinitz (Editors), Chapman & Hall/CRC, Boca Raton, FL, 2007, pp. 79–101), namely, 5−(v, k, λ) designs with (v, k, λ)=(18, 8, 2m) (m=6, 9), (19, 9, 7m) (m=6, 9), (24, 9, 6m) (m=3, 4, 5), (25, 9, 30), (25, 10, 24m) (m=4, 5), (26, 10, 126), (30, 12, 440), (32, 6, 3m) (m=2, 3, 4), (33, 7, 84), and (36, 12, 45n) for 2⩽n⩽17. These results imply that a simple 5−(v, k, λ) design with (v, k)=(24, 9), (25, 9), (26, 10), (32, 6), or (33, 7) exists for all admissible values of λ. © 2010 Wiley Periodicals, Inc. J Combin Designs 18: 305–317, 2010.

Publisher's Statement

© 2010 Wiley Periodicals, Inc. Publisher’s version of record: https://doi.org/10.1002/jcd.20251

Publication Title

Journal of Combinatorial Designs

Share

COinS