"Three hundred and sixty degree real-time monitoring of 3-D printing us" by Siranee Nuchitprasitchai, Michael C. Roggemann et al.
 

Document Type

Article

Publication Date

7-4-2017

Abstract

Prosumer (producing consumer)-based desktop additive manufacturing has been enabled by the recent radical reduction in 3-D printer capital costs created by the open-source release of the self-replicating rapid prototype (RepRap). To continue this success, there have been some efforts to improve reliability, which are either too expensive or lacked automation. A promising method to improve reliability is to use computer vision, although the success rates are still too low for widespread use. To overcome these challenges an open source low-cost reliable real-time optimal monitoring platform for 3-D printing from double cameras is presented here. This error detection system is implemented with low-cost web cameras and covers 360 degrees around the printed object from three different perspectives. The algorithm is developed in Python and run on a Raspberry Pi3 mini-computer to reduce costs. For 3-D printing monitoring in three different perspectives, the systems are tested with four different 3-D object geometries for normal operation and failure modes. This system is tested with two different techniques in the image pre-processing step: SIFT and RANSAC rescale and rectification, and non-rescale and rectification. The error calculations were determined from the horizontal and vertical magnitude methods of 3-D reconstruction images. The non-rescale and rectification technique successfully detects the normal printing and failure state for all models with 100% accuracy, which is better than the single camera set up only. The computation time of the non-rescale and rectification technique is two times faster than the SIFT and RANSAC rescale and rectification technique.

Publisher's Statement

© 1996-2018 MDPI AG, Publisher's version of record: https://dx.doi.org/10.3390/jmmp1010002

Publication Title

Journal of Manufacturing and Materials Processing

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Version

Publisher's PDF

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 54
    • Patent Family Citations: 1
  • Usage
    • Downloads: 235
    • Abstract Views: 11
  • Captures
    • Readers: 91
  • Mentions
    • Blog Mentions: 1
see details

Included in

Manufacturing Commons

Share

COinS