Document Type

Article

Publication Date

1-15-2019

Abstract

Arctic and boreal ecosystems are experiencing pronounced warming that is accelerating decomposition of soil organic matter and releasing greenhouse gases to the atmosphere. Future carbon storage in these ecosystems depends on the balance between microbial decomposition and primary production, both of which can be regulated by nutrients such as phosphorus. Phosphorus cycling in tundra and boreal regions is often assumed to occur through biological pathways with little interaction with soil minerals; that is, phosphate released from organic molecules is rapidly assimilated by plants or microorganisms. In contrast to this prevailing conceptual model, we use sequential extractions and spectroscopic techniques to demonstrate that iron (oxyhydr)oxides sequester approximately half of soil phosphate in organic soils from four arctic and boreal sites. Iron (III) (oxyhydr)oxides accumulated in shallow soils of low‐lying, saturated areas where circumneutral pH and the presence of a redox interface promoted iron oxidation and hydrolysis. Soils enriched in short‐range ordered iron oxyhydroxides, which are susceptible to dissolution under anoxic conditions, had high phosphate sorption capacities and maintained low concentrations of soluble phosphate relative to soils containing mostly organic‐bound iron or crystalline iron oxides. Thus, substantial quantities of phosphorus in these organic soils were associated with minerals that could reduce bioavailability but potentially also serve as phosphorus sources under anoxic conditions. The implication of this finding is that mineral surfaces effectively compete with biological processes for phosphate and must be considered as a nutrient regulator in these sensitive ecosystems.

Publisher's Statement

©2019 American Geophysical Union. Article deposited here in compliance with publisher policies. Publisher's version of record: https://doi.org/10.1029/2018JG004776

Publication Title

Journal of Geophysical Research: Biogeosciences

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.