Date of Award
2014
Document Type
Master's Thesis
Degree Name
Master of Science in Mechanical Engineering (MS)
College, School or Department Name
Department of Mechanical Engineering-Engineering Mechanics
Advisor
Charles D. Van Karsen
Abstract
The goal of this project is to learn the necessary steps to create a finite element model, which can accurately predict the dynamic response of a Kohler Engines Heavy Duty Air Cleaner (HDAC). This air cleaner is composed of three glass reinforced plastic components and two air filters. Several uncertainties arose in the finite element (FE) model due to the HDAC’s component material properties and assembly conditions. To help understand and mitigate these uncertainties, analytical and experimental modal models were created concurrently to perform a model correlation and calibration. Over the course of the project simple and practical methods were found for future FE model creation. Similarly, an experimental method for the optimal acquisition of experimental modal data was arrived upon. After the model correlation and calibration was performed a validation experiment was used to confirm the FE models predictive capabilities.
Recommended Citation
Carter, Steven P., "TEST-ANALYSIS MODEL CORRELATION AND CALIBRATION OF A MULTI-COMPONENT PLASTIC PART", Master's Thesis, Michigan Technological University, 2014.