Date of Award


Document Type

Master's Thesis

Degree Name

Master of Science in Biological Sciences (MS)

College, School or Department Name

Department of Biological Sciences


Jason R Carter


Little or poor quality sleep is often reported in patients suffering from acute or chronic pain. Conversely, sleep loss has been known to elevate pain perception; thus a potential bi-direction relationship exists between sleep deprivation and pain. The effect of sleep deprivation on the thermal pain intensity has yet to be determined, furthermore, sex differences in pain have not been examined following sleep deprivation. There is also a higher prevalence of insomnia in women, and reports indicate that sleep quality is diminished and pain sensitivity may be greater during high hormone phases of the menstrual cycle. In Study 1 we examined the effects of 24-hour total sleep deprivation (TSD) on pain intensity during a 2-minute cold pressor test (CPT). We hypothesized that TSD would augment thermal pain intensity during CPT and women would demonstrate an elevated response compare to men. In Study 2 we investigated the effects of menstrual phase on pain intensity during CPT following TSD. We hypothesized that pain intensity would be augmented during the mid-luteal (ML) phase of the menstrual cycle. In Study 1, pain intensity was recorded during CPT in 14 men and 13 women after normal sleep (NS) and TSD. Pain intensity responses during CPT were elevated in both conditions; however, pain intensity was augmented (~ 1.2 a.u.) following TSD. When analyzed for sex differences, pain intensity was not different between men and women in either condition. In Study 2, pain intensity was recorded during CPT in 10 female subjects during the early follicular (EF) and ML phases of the menstrual cycle after TSD. Estradiol and progesterone levels were elevated during the ML phase, however, pain intensity was not different between the two phases. We conclude that TSD significantly augments pain intensity during CPT, but this response is not sex dependent. We further demonstrate that the collective effect of TSD and elevated gonadal hormone concentrations do not result in a differential pain response during the EF and ML phases of the menstrual cycle. Collectively, sleep loss augments pain intensity ratings in men and women and may contribute to sleep loss in painful conditions.

Included in

Physiology Commons