Date of Award

2011

Document Type

Dissertation

Degree Name

Doctor of Philosophy in Mechanical Engineering-Engineering Mechanics (PhD)

College, School or Department Name

Department of Mechanical Engineering-Engineering Mechanics

Advisor

Tammy Lynn Haut Donahue

Co-Advisor

Gregory M Odegard

Abstract

Skeletal muscle force evaluation is difficult to implement in a clinical setting. Muscle force is typically assessed through either manual muscle testing, isokinetic/isometric dynamometry, or electromyography (EMG). Manual muscle testing is a subjective evaluation of a patient’s ability to move voluntarily against gravity and to resist force applied by an examiner. Muscle testing using dynamometers adds accuracy by quantifying functional mechanical output of a limb. However, like manual muscle testing, dynamometry only provides estimates of the joint moment. EMG quantifies neuromuscular activation signals of individual muscles, and is used to infer muscle function. Despite the abundance of work performed to determine the degree to which EMG signals and muscle forces are related, the basic problem remains that EMG cannot provide a quantitative measurement of muscle force.

Intramuscular pressure (IMP), the pressure applied by muscle fibers on interstitial fluid, has been considered as a correlate for muscle force. Numerous studies have shown that an approximately linear relationship exists between IMP and muscle force. A microsensor has recently been developed that is accurate, biocompatible, and appropriately sized for clinical use. While muscle force and pressure have been shown to be correlates, IMP has been shown to be non-uniform within the muscle. As it would not be practicable to experimentally evaluate how IMP is distributed, computational modeling may provide the means to fully evaluate IMP generation in muscles of various shapes and operating conditions.

The work presented in this dissertation focuses on the development and validation of computational models of passive skeletal muscle and the evaluation of their performance for prediction of IMP. A transversly isotropic, hyperelastic, and nearly incompressible model will be evaluated along with a poroelastic model.

Share

COinS