Date of Award


Document Type

Open Access Master's Thesis

Degree Name

Master of Science in Mathematical Sciences (MS)

Administrative Home Department

Department of Mechanical Engineering-Engineering Mechanics

Advisor 1

Nina Mahmoudian

Committee Member 1

Mohammad Rastgaar

Committee Member 2

Guy Meadows


Autonomous Underwater Vehicles (AUVs) are extremely capable vehicles for numerous ocean related missions. AUVs are energy limited, resulting in short mission endurance on the scale of hours to days. Underwater Gliders (UGs) are able to operate on the order of months to years by using nontraditional propulsion methods. UGs, however, are unable to perform missions requiring high speed or direct forward motion due to the nature of their buoyancy driven motion. This work reviews the current state of the art in recharging AUVs and offers an underwater recharging network concept at a significantly reduced cost to traditional methods. The solution includes the design of a UG capable of serving as charge carrying agent that couples with and charges AUVs autonomously. The vehicle design is built on the work done previously at the Nonlinear and Autonomous Systems Lab on the development of ROUGHIE (Research Oriented Underwater Glider for Hands-on Investigative Engineering). The ROUGHIE2 design is a rethinking of the original ROUGHIE capabilities to serve as a mobile charger by increasing depth rating, endurance, and payload capacity. The recharging concept presented will be easy to adapt to many different AUVs and UGs making this technology universal to small AUVs.