Date of Award


Document Type

Open Access Dissertation

Degree Name

Doctor of Philosophy in Computational Science and Engineering (PhD)

Administrative Home Department

Department of Computer Science

Advisor 1

Ali Ebnenasir

Committee Member 1

César Muñoz

Committee Member 2

Jean Mayo

Committee Member 3

Charles Wallace


Interactive Theorem Proving (ITP) is one of the most rigorous methods used in

formal verification of computing systems. While ITP provides a high level of confidence in the correctness of the system under verification, it suffers from a steep learning curve and the laborious nature of interaction with a theorem prover. As such, it is desirable to investigate whether ITP can be used in unexplored (but high-impact) domains where other verification methods fail to deliver. To this end, the focus of this dissertation is on two important domains, namely design of parameterized self-stabilizing systems, and mechanical verification of numerical approximations for Riemann integration. Self-stabilization is an important property of distributed systems that enables recovery from any system configuration/state. There are important applications for self-stabilization in network protocols, game theory, socioeconomic systems, multi-agent systems and robust data structures. Most existing techniques for the design of self-stabilization rely on a ‘manual design and after-the-fact verification’ method. In a paradigm shift, we present a novel hybrid method of ‘synthesize in small scale and generalize’ where we combine the power of a finite-state synthesizer with theorem proving. We have used our method for the design of network protocols that are self-stabilizing irrespective of the number of network nodes (i.e., parameterized protocols). The second domain of application of ITP that we are investigating concentrates on formal verification of the numerical propositions of Riemann integral in formal proofs. This is a high-impact problem as Riemann Integral is considered one of the most indispensable tools of modern calculus. That has significant applications in the development of mission-critical systems in many Engineering fields that require rigorous computations such as aeronautics, space mechanics, and electrodynamics. Our contribution to this problem is three fold: first, we formally specify and verify the fundamental Riemann Integral inclusion theorem in interval arithmetic; second, we propose a general method to verify numerical propositions on Riemann Integral for a large class of integrable functions; third, we develop a set of practical automatic proof strategies based on formally verified theorems. The contributions of Part II have become part of the ultra-reliable NASA PVS standard library.