Date of Award


Document Type

Open Access Master's Thesis

Degree Name

Master of Science in Environmental Engineering (MS)

Administrative Home Department

Department of Civil and Environmental Engineering

Advisor 1

Daisuke Minakata

Committee Member 1

Loredana Valenzano

Committee Member 2

David Hand


Advanced Oxidation Processes (AOPs) that produce highly reactive hydroxyl radicals (HO•) are attractive and promising water and wastewater treatment technologies because HO• can destroy a variety of organic compounds. However, background dissolved organic matter (DOM) significantly reduces the performance of AOPs by scavenging HO•. The conventional experimental approach to identifying ‘average’ reactivity limits our mechanistic understanding of the reaction of HO• with complex mixture of surrogate DOM. This is the first study to use quantum mechanical methods to understand the elementary reactions of HO• with a model monomer of DOM. “Temple Northeastern Birmingham model” (TNB). The theoretically calculated aqueous-phase free energies of activation indicate that the functional groups in neighboring positions significantly affect the reactivity of HO• with each active site of the TNB model monomer of DOM.