Date of Award


Document Type

Open Access Dissertation

Degree Name

Doctor of Philosophy in Computational Science and Engineering (PhD)

Administrative Home Department

Department of Applied Computing

Advisor 1

Weihua Zhou

Committee Member 1

Jinshan Tang

Committee Member 2

Timothy Havens

Committee Member 3

Laura Brown

Committee Member 4

Jingfeng Jiang

Committee Member 5

Daniel R. Fuhrmann


Image segmentation refers to the division of a digital image into distinct segments or groups of pixels/voxels. However, most of the existing deep learning approaches lack the utilization of prior knowledge, such as shape information, which could improve segmentation accuracy. In addition, conventional image segmentation frequently falls short in preserving intricate spatial details, motivating the innovation of strategies for multi-scaled feature integration. Furthermore, traditional image segmentation methods primarily concentrate on pixel-level or region-level analysis. However, given the inherent morphological similarities among various image objects, the significance of topology information surpasses that of pixel-level data in the realm of medical image semantic segmentation, and the incorporation of topology information for image segmentation is important.

The first aim of this dissertation is to incorporate shape priors into medical image segmentation. A shape-prior-V-Net (SP-V-Net) is proposed, which contains a shape transformation module to refine the segmentation results according to the shape prior. SP-V-Net has been applied to lung segmentation and proximal femur segmentation.

The second aim aims to improve image segmentation by leveraging hierarchical features. Two approaches are proposed: the feature pyramid U-Net++ (FP-U-Net++), which dynamically aggregates the feature pyramid in the decoder of U-Net ++, and the multi-input multi-scale U-Net (MIMS U-Net), which integrates the features in the encoder of the U-Net.

The third aim explores topology-based image semantic segmentation using graph neural networks. Three graph-matching networks have been developed, including association graph-based, edge attention graph matching, and hyper-association graph matching networks. The proposed graph-matching networks convert the graph-matching problems into a vertex classification problem using an association graph, where the positive vertex indicates the nodes from two individual graphs are matched. These models were applied to coronary artery semantic labeling on invasive coronary angiograms. Moreover, this study presents a pioneering approach for topology-based image semantic labeling using graph matching.

The successful completion of these aims contributes technically accurate and clinically applicable algorithms and techniques for medical image segmentation. The outcomes of this dissertation provide valuable tools for the medical imaging and computer vision communities, advancing the field and improving patient care through accurate and efficient medical image segmentation.

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License