Date of Award

2020

Document Type

Open Access Dissertation

Degree Name

Doctor of Philosophy in Mechanical Engineering-Engineering Mechanics (PhD)

Administrative Home Department

Department of Mechanical Engineering-Engineering Mechanics

Advisor 1

Bo Chen

Advisor 2

Jeffrey D. Naber

Committee Member 1

Mahdi Shahbakhti

Committee Member 2

David D Wanless

Abstract

To meet increasingly stringent fuel economy and emissions legislation, more advanced technologies have been added to spark-ignition (SI) engines, thus exponentially increase the complexity and calibration work of traditional map-based engine control. To achieve better engine performance without introducing significant calibration efforts and make the developed control system easily adapt to future engines upgrades and designs, this research proposes a model-based optimal control system for cycle-by-cycle Gasoline Turbocharged Direct Injection (GTDI) SI engine control, which aims to deliver the requested torque output and operate the engine to achieve the best achievable fuel economy and minimum emission under wide range of engine operating conditions.

This research develops a model-based ignition timing prediction strategy for combustion phasing (crank angle of fifty percent of the fuel burned, CA50) control. A control-oriented combustion model is developed to predict burn duration from ignition timing to CA50. Using the predicted burn duration, the ignition timing needed for the upcoming cycle to track optimal target CA50 is calculated by a dynamic ignition timing prediction algorithm.

A Recursive-Least-Square (RLS) with Variable Forgetting Factor (VFF) based adaptation algorithm is proposed to handle operating-point-dependent model errors caused by inherent errors resulting from modeling assumptions and limited calibration points, which helps to ensure the proper performance of model-based ignition timing prediction strategy throughout the entire engine lifetime. Using the adaptive combustion model, an Adaptive Extended Kalman Filter (AEKF) based CA50 observer is developed to provide filtered CA50 estimation from cyclic variations for the closed-loop combustion phasing control.

An economic nonlinear model predictive controller (E-NMPC) based GTDI SI engine control system is developed to simultaneously achieve three objectives: tracking the requested net indicated mean effective pressure (IMEPn), minimizing the SFC, and reducing NOx emissions. The developed E-NMPC engine control system can achieve the above objectives by controlling throttle position, IVC timing, CA50, exhaust valve opening (EVO) timing, and wastegate position at the same time without violating engine operating constraints. A control-oriented engine model is developed and integrated into the E-NMPC to predict future engine behaviors. A high-fidelity 1-D GT-POWER engine model is developed and used as the plant model to tune and validate the developed control system. The performance of the entire model-based engine control system is examined through the software-in-the-loop (SIL) simulation using on-road vehicle test data.

Available for download on Tuesday, December 07, 2021

Share

COinS