Date of Award


Document Type

Open Access Master's Thesis

Degree Name

Master of Science in Mechanical Engineering (MS)

Administrative Home Department

Department of Mechanical Engineering-Engineering Mechanics

Advisor 1

Wayne Weaver

Committee Member 1

Jeremy Bos

Committee Member 2

Jung Yun Bae


As technology advances, the use of collaborative autonomous mobile systems for various applications will become evermore prevalent. One interesting application of these multi-agent systems is for autonomous mobile microgrids. These systems will play an increasingly important role in applications such as military special operations for mobile ad-hoc power infrastructures and for intelligence, surveillance, and reconnaissance missions. In performing these operations with these autonomous energy assets, there is a crucial need to optimize their functionality according to their specific application and mission. Challenges arise in determining mission characteristics such as how each resource should operate, when, where, and for how long.

This thesis explores solutions in determining optimal mission plans around the applications of autonomous mobile microgrids and resource scheduling with UGVs and UAVs. Optimal network connections, energy asset locations, and cabling trajectories are determined in the mobile microgrid application. The resource scheduling applications investigate the use of a UGV to recharge wireless sensors in a wireless sensor network. Optimal recharging of mobile distributed UAVs performing reconnaissance missions is also explored. With genetic algorithm solution approaches, the results show the proposed methods can provide reasonable a-priori mission plans, considering the applied constraints and objective functions in each application. The contributions of this thesis are: (1) The development and analysis of solution methodologies and mission simulators for a-priori mission plan development and testing, for applications in organizing and scheduling power delivery with mobile energy assets. Applying these methods results in (2) the development and analysis of reasonable a-priori mission plans for autonomous mobile microgrids/assets, in various scenarios. This work could be extended to include a more diverse set of heterogeneous agents and incorporate dynamic loads to provide power to.