Off-campus Michigan Tech users: To download campus access theses or dissertations, please use the following button to log in with your Michigan Tech ID and password: log in to proxy server
Non-Michigan Tech users: Please talk to your librarian about requesting this thesis or dissertation through interlibrary loan.
Date of Award
2012
Document Type
Master's Thesis
Degree Name
Master of Science in Forest Ecology and Management (MS)
College, School or Department Name
School of Forest Resources and Environmental Science
First Advisor
Catherine Sophia Tarasoff
Abstract
Our research explored the influence of deer and gap size on nitrogen cycling, soil compaction, and vegetation trajectories in twelve canopy gaps of varying sizes in a hemlock-northern hardwood forest. Each gap contained two fenced and two unfenced plots. Gap size, soil compaction, winter deer use, and available nitrogen were measured in 2011. Vegetation was assessed in 2007 and 2011, and non-metric multi-dimensional scaling was used to determine vegetative change. Results show that winter deer use was greater in smaller gaps. Deer accessibility did not influence compaction but did significantly increase total available nitrogen in April. April ammonium, April nitrate, and May nitrate were positively related to gap size. The relationship between gap size and vegetative community change was positive for fenced plots but unrelated for unfenced plots. In conclusion, deer are positively contributing to nitrogen dynamics and altering the relationship between canopy gap size and vegetative community change.
Recommended Citation
Tahtinen, Betsy E., "Influence of white-tailed deer on nitrogen cycling and vegetative community change in canopy gaps in a hemlock-northern hardwood forest", Master's Thesis, Michigan Technological University, 2012.
- Usage
- Abstract Views: 166
- Downloads: 8