Title
Multiscale thermal modeling of cured Cycloaliphatic Epoxy/Carbon fiber composites
Document Type
Article
Publication Date
2017
Abstract
Cycloaliphatic epoxies (CEs) are commonly used for structural applications requiring improved resistance to elevated temperatures, UV radiation, and moisture relative to other epoxy materials. Accurate and efficient computational models can greatly facilitate the development of CE-based composite materials for applications such as Aluminum Conductor Composite Core high-voltage power lines. In this study, a new multiscale modeling method is developed for CE resins and composite materials to efficiently predict thermal properties (glass-transition temperature, thermal expansion coefficient, and thermal conductivity). The predictions are compared to experimental data, and the results indicate that the multiscale modeling method can accurately predict thermal properties for CE-based materials. For 85% crosslink densities, the predicted glass-transition temperature, thermal expansion coefficient, and thermal conductivity are 279 °C, 109 ppm °C−1, 0.24 W m−1 K−1, respectively. Thus, this multiscale modeling method can be used for the future development of improved CE composite materials for thermal applications.
Publication Title
Journal of Applied Polymer Science
Recommended Citation
Chinkanjanarot, S.,
Radue, M. S.,
S, G.,
Tomasi, J.,
Klimek-McDonald, D. R.,
King, J. A.,
&
Odegard, G. M.
(2017).
Multiscale thermal modeling of cured Cycloaliphatic Epoxy/Carbon fiber composites.
Journal of Applied Polymer Science,
135.
http://doi.org/10.1002/app.46371
Retrieved from: https://digitalcommons.mtu.edu/data-science-fp/40
Publisher's Statement
© 2018 Wiley Periodicals. Publisher's version of record: http://dx.doi.org/10.1002/app.46371