Title
Electrochemical hematocrit determination in a direct current microfluidic device
Document Type
Article
Publication Date
1-14-2015
Abstract
Hematocrit (HCT) tests are widely performed to screen blood donors and to diagnose medical conditions. Current HCT test methods include conventional microhematocrit, Coulter counter, CuSO4 specific gravity, and conductivity‐based point‐of‐care (POC) HCT devices, which can be either expensive, environmentally inadvisable, or complicated. In the present work, we introduce a new and simple microfluidic system for a POC HCT determination. HCT was determined by measuring current responses of blood under 100 V DC for 1 min in a microfluidic device containing a single microchannel with dimensions of 180 μm by 70 μm and 10 mm long. Current responses of red blood cell (RBC) suspensions in PBS or separately plasma at HCT concentrations of 10, 20, 25, 30, 35, 40, 45, 50, 55, 60, and 70 vol% were measured to show feasibility of the microfluidic system for HCT determination. Key parameters affecting current responses included electrolysis bubbles and irreversible RBC adsorption; parameters were optimized via addition of nonionic surfactant Triton X‐100 into sample solution and carbonizing electrode surfaces. The linear trend line of current responses over a range of RBC concentrations were obtained in both PBS and plasma. This work suggested that a simple microfluidic device could be a promising platform for a new POC HCT device.
Publication Title
Electrophoresis
Recommended Citation
Lee, H. Y.,
Barber, C.,
Rogers, J.,
&
Minerick, A.
(2015).
Electrochemical hematocrit determination in a direct current microfluidic device.
Electrophoresis,
36, 978-985.
http://doi.org/10.1002/elps.201400466
Retrieved from: https://digitalcommons.mtu.edu/chemical-fp/9
Publisher's Statement
© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. Publisher's version of record: https://doi.org/10.1002/elps.201400466