Document Type
Article
Publication Date
1-23-2019
Abstract
Shear wave elastography (SWE) techniques have received substantial attention in recent years. Strong experimental data in SWE suggest that shear wave speed changes significantly due to the known acoustoelastic effect (AE). This presents both challenges and opportunities toward in vivo characterization of biological soft tissues. In this work, under the framework of continuum mechanics, we model a tissue-mimicking material as a homogeneous, isotropic, incompressible, hyperelastic material. Our primary objective is to quantitatively and qualitatively compare experimentally measured acoustoelastic data with model-predicted outcomes using multiple strain energy functions. Our analysis indicated that the classic neo-Hookean and Mooney-Rivlin models are inadequate for modeling the AE in tissue-mimicking materials. However, a subclass of strain energy functions containing both high-order /exponential term(s) and second-order invariant dependence showed good agreement with experimental data. Based on data investigated, we also found that discrepancies may exist between parameters inversely estimated from uniaxial compression and SWE data. Overall, our findings may improve our understanding of clinical SWE results.
Publication Title
Physics in Medicine & Biology
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Recommended Citation
Rosen, D. P.,
&
Jiang, J.
(2019).
A comparison of hyperelastic constitutive models applicable to shear wave elastography (SWE) data in tissue-mimicking materials.
Physics in Medicine & Biology.
http://doi.org/10.1088/1361-6560/ab0137
Retrieved from: https://digitalcommons.mtu.edu/biomedical-fp/42
Version
Postprint
Publisher's Statement
Copyright 2019 IOPscience. Accepted manuscript deposited here in compliance with publisher policies. Publisher's version of record: https://doi.org/10.1088/1361-6560/ab0137