Document Type
Article
Publication Date
1-9-2019
Abstract
River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.
Publication Title
Science Advances
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Recommended Citation
Tiegs, S.,
Costello, D.,
Isken, M. W.,
Woodward, G.,
McIntyre, P. B.,
Gessner, M. O.,
Marcarelli, A.,
&
et. al.
(2019).
Global patterns and drivers of ecosystem functioning in rivers and riparian zones.
Science Advances,
5(1).
http://doi.org/10.1126/sciadv.aav0486
Retrieved from: https://digitalcommons.mtu.edu/biological-fp/121
Publisher's Statement
© 2019 The Authors. Article deposited here in compliance with publisher policies. Publisher's version of record: https://dx.doi.org/10.1126/sciadv.aav0486