Document Type


Publication Date



Metal–organic frameworks (MOFs) are porous materials of recent interest due to their promising properties for technological applications. In this paper, the structure–property relationships of pristine and functionalized Zn-BTC (Zn3(BTC)2) MOFs are investigated. The results based on density functional theory (DFT) find that MOFs with coordinatively saturated secondary building units (SBU) are metallic, and MOFs with coordinatively unsaturated SBU are semi-conducting. The ligand functionalization with electron acceptor (cyano-) and electron donor (amino-) groups appears to tailor the electronic properties of Zn-BTC MOFs; amino-functionalization led to a significant upward shift of the band-edges whereas cyano-functionalization yields shifting of band-edges in the opposite direction, which led to a narrowing of the band gap. Modifying the electronic properties through such ligand functionalization design principles can be useful in engineering MOFs for gas sensing and device applications.

Publisher's Statement

© The Royal Society of Chemistry 2019. Article deposited here in compliance with publisher policy. Publisher's version of record:

Publication Title

RSC Advances

Creative Commons License

Creative Commons Attribution-Noncommercial 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License


Publisher's PDF

Included in

Physics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.