Document Type


Publication Date



A simple geometric argument relating to the liquid water content of clouds is given. The phase relaxation time and the nature of the quasi-steady approximation for the diffusional growth of cloud drops are elucidated directly in terms of water vapor concentration. Spatial gradients of vapor concentration, inherent in the notion of quasi-steady growth, are discussed and we argue for an occasional reversal of the traditional point of view: rather than a drop growing in response to a given supersaturation, the observed values of the supersaturation in clouds are the result of a vapor field adjusting to droplet growth. Our perspective is illustrated by comparing the exponential decay of condensation trails with a quasi-steady regime of cirrus clouds. The role of aerosol loading in decreasing relaxation times and increasing the rate of growth of the liquid water content is also discussed.

Publisher's Statement

© 2009 IOP Publishing Ltd. Article deposited here in compliance with publisher policies. Publisher’s version of record:

Publication Title

Environmental Research Letters


Publisher's PDF

Included in

Physics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.