Document Type

Article

Publication Date

12-22-2008

Abstract

Marine stratocumuli make a major contribution to Earth’s radiation budget. Drizzle in such clouds can greatly affect their albedo, lifetime and fractional coverage, so drizzle rate prediction is important. Here we examine a question: does a drizzle rate (R) depend on cloud depth (H) and/or drop number concentration n in a simple way? This question was raised empirically in several recent publications and an approximate H3/n dependence was observed. Here we suggest a simple explanation for H3 scaling from viewing the drizzle rate as a sedimenting volume fraction ( f ) of water drops (radius r) in air, i.e. R = f u(r ), where u is the fall speed of droplets at the cloud base. Both R and u have units of speed. In our picture, drizzle drops begin from condensation growth on the way up and continue with accretion on the way down. The ascent contributes H ( f ∝ H) and the descent H2 (u ∝ r ∝ f H) to the drizzle rate. A more precise scaling formula is also derived and may serve as a guide for parameterization in global climate models. The number concentration dependence is also discussed and a plausibility argument is given for the observed n−1 dependence of the drizzle rate. Our results suggest that deeper stratocumuli have shorter washout times.

Publisher's Statement

© 2008 IOP Publishing Ltd. Publisher’s version of record: https://doi.org/10.1088/1748-9326/3/4/045019

Publication Title

Environmental Research Letters

Version

Publisher's PDF

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.