Document Type


Publication Date



Classical radar theory only considers incoherent backscatter from precipitation. Can precipitation generate coherent scatter as well? Until now, the accepted answer has been no, because hydrometeors are distributed sparsely in space (relative to radar wavelength) so that the continuum assumption used to explain coherent scatter in clear air and clouds does not hold.

In this work, a theory for a different mechanism is presented. The apparent existence of the proposed mechanism is then illustrated in both rain and snow. A new power spectrum Z( f ), the Fourier transform of the time series of the radar backscattered reflectivities, reveals statistically significant frequencies f of periodic components that cannot be ascribed to incoherent scatter. It is shown that removing those significant fs from Z( f ) at lower frequencies greatly reduces the temporal coherency. These lower frequencies, then, are associated with the increased temporal coherency. It is also shown that these fs are also directly linked to the Doppler spectral peaks through integer multiples of one-half the radar wavelength, characteristic of Bragg scatter. Thus, the enhanced temporal coherency is directly related to the presence of coherent scatter in agreement with theory.

Moreover, the normalized backscattered power spectrum Z( f ) permits the estimation of the fractional coherent power contribution to the total power, even for an incoherent radar. Analyses of approximately 26 000 one-second Z( f ) in both rain and snow reveal that the coherent scatter is pervasive in these data. These findings present a challenge to the usual assumption that the scatter of radar waves from precipitation is always incoherent and to interpretations of backscattered power based on this assumption.

Publisher's Statement

© 2010 American Meteorological Society. Article deposited here in compliance with publisher policy. Publisher’s version of record:

Publication Title

Journal of Atmospheric Sciences


Publisher's PDF

Included in

Physics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.